Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

نویسندگان

  • H Rodríguez
  • T Gonzalez
  • G Selman
چکیده

A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production of Ice Nucleation Deficient (Ice-) Mutants of the Epiphytic Strains of Erwinia herbicola

To mutate the Ice Nucleation Active (INA) gene in Erwinia herbicola strains, Tn-5 transposon carried by Psup2021 plasmid was used. This plasmid was transferred to the bacterial cells by electroporation. Electrotransformation was carried out for 2.5 ms at 1800 v and 1 mm distance between the electrodes. Polymerase chain reaction was used for determination of presence or loss of INA gene, using a...

متن کامل

Pii: S0734-9750(99)00014-2

The use of phosphate solubilizing bacteria as inoculants simultaneously increases P uptake by the plant and crop yield. Strains from the genera Pseudomonas, Bacillus and Rhizobium are among the most powerful phosphate solubilizers. The principal mechanism for mineral phosphate solubilization is the production of organic acids, and acid phosphatases play a major role in the mineralization of org...

متن کامل

Screening and identification of Iranian native phosphate solubilizing bacteria and investigation of their genetic diversity using RAPD markers

Phosphorus, the most essential nutrient for plants, becomes quickly unavailable for the plants in the soil. Phosphate solubilizing bacteria (PSB( can play an important role in providing Phosphorus for plants. In this study, the PSBs were screened from plant rhizosphere by Pikovskaya method. Then, the growth rate and phosphate solubilizing ability of 9 superior strains were measured at different...

متن کامل

Cloning and regulation of Erwinia herbicola pigment genes.

The genes coding for yellow pigment production in Erwinia herbicola Eho10 (ATCC 39368) were cloned and localized to a 12.4-kilobase (kb) chromosomal fragment. A 2.3-kb AvaI deletion in the cloned fragment resulted in the production of a pink-yellow pigment, a possible precursor of the yellow pigment. Production of yellow pigment in both E. herbicola Eho10 and pigmented Escherichia coli clones w...

متن کامل

Potential use of Iranian rhizobial strains as plant growth-promoting rhizobacteria (PGPR) and effects of selected strains on growth characteristics of wheat, corn and alfalfa

Abstract Many agricultural researches have been performed to improve soil productivity. Nitrogen (N) and Phosphorus (P) are essential elements which are utilized by the plants in large amounts. Phosphorus can be provided by applying chemical fertilizers. Microorganisms convert insoluble phosphate to the soluble form and some bacteria such as rhizobacteria play an important role in this proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biotechnology

دوره 84 2  شماره 

صفحات  -

تاریخ انتشار 2001